其他
Transformer 总结 - 2022 版
↓推荐关注↓
很多人的“记忆”并没那么好,特别是对名字.这些年各种各样的transformer涌现出来,各有各的优势,但是他们的名字却不能直白的看出该版本的transformer到底做了什么.这篇的目的就是把所有流行的transformer进行清晰简单的分类,以便大家对transformer家族快速梳理。
Transformer是什么就不用多说了,2017年开始至今引用量将近4w的论文<Attention is All you Need>提出了一个encoder-decoder的模型取代了历年一直用的LSTM或者其他RNN,正如标题所述该论文最重要的就是Attention结构了.Transformer最基础的结构如下所示:
顺便温习一下最"核心"的multi-headed attention结构,该结构"匹配"query和key-value对,并且输出value的权重和,value的权重来自于query和key的attention值.Transformer结构使用了多头机制,并行计算特定的attention值,计算方式采用的是Scaled Dot-Product Attentio,如下图所示:
Language Modeling(LM) 预测下个token Masked Language Modeling(MLM) 完形填空 Permuted Language Modeling(PLM) 对句子做排列 Denoising Autoencoder(DAE): 句子中做随机采样,或者随机删除一些token,又或是打乱句子顺序,目标是恢复之前的输入 Contrastive Learning(CTL): 各种对比学习方法
应用:问答、情感分析、实体识别等.
看不清打开该路径:
https://docs.google.com/spreadsheets/d/1ltyrAB6BL29cOv2fSpNQnnq2vbX8UrHl47d7FkIf6t4/edit#gid=0
作者:Xavier Amatriain
翻译:炼丹小生
- EOF -
觉得本文对你有帮助?请分享给更多人
推荐关注「Python开发者」,提升Python技能
点赞和在看就是最大的支持❤️